Komposite
Komposite auch Komposit; (aus dem Lateinischen componere = zusammensetzen) sind zahnfarbene plastische Füllungsmaterialien für die zahnärztliche Behandlung. Laienhaft werden sie auch oft als Kunststofffüllungen bezeichnet, fälschlicherweise gelegentlich auch wegen ihrer Zahnfarbe mit Keramikfüllungen verwechselt. Nach dem Einbringen in eine Kavität härten sie chemisch oder durch das Bestrahlen mit Licht oder kombiniert (dualhärtend) aus. Heute werden Komposite auch als Befestigungsmaterialien verwendet. Bei lichthärtenden Systemen lässt sich die Verarbeitungszeit steuern, was sowohl beim Legen von Füllungen als auch bei der adhäsiven Befestigung von Werkstücken einen großen Vorteil darstellt. Dualhärtende Befestigungsmaterialien sind Paste/Paste-Systeme mit chemischen und photosensiblen Initiatoren, die eine ausreichende Aushärtung auch in Bereichen ermöglicht, wo die Lichthärtung nicht gesichert oder kontrollierbar ist. Komposite wurden 1962 durch die Mischung aus Dimethacrylat (Epoxidharz und Methacrylsäure) mit silanisiertem Quarzmehl hergestellt (Bowen 1963). Kompositrestaurationen sind dank ihrer Eigenschaften (Ästhetik und Vorteile der Adhäsivtechnik) heute anstelle der Amalgamfüllungen gerückt.
Geschichte der Kompositentwicklung
Die wesentlichen Entwicklungsschritte der Kompositmaterialien können wie folgt dargestellt werden:
Das Material besteht aus drei Komponenten: der Harzmatrix (organischer Anteil), den Füllstoffen (anorganische Anteile) und der Verbundphase. Die Harzmatrix besteht meistens aus Bis-GMA (Bisphenol-A-Glycidyldimethacrylat). Da Bis-GMA alleine hochviskös ist, wird es in unterschiedlicher Zusammensetzung mit kurzkettigeren Monomeren wie z. B. TEGDMA (Triethylenglycol-Dimethacrylat) gemischt. Je niedriger der Anteil an Bis-GMA und je höher der Anteil von TEGDMA, umso höher ist die Polymerisationsschrumpfung (Gonçalves et al. 2008). Der Ersatz von Bis-GMA mit TEGDMA erhöht die Zug-, aber vermindert die Biegefestigkeit (Asmussen & Peutzfeldt 1998). Monomere können aus dem Füllungsmaterial freigesetzt werden. Eine längere Lichtpolymerisation führt zu einer besseren Konversionsrate (Verkettung der einzelnen Monomere) und damit zu einer niedrigeren Monomerfreisetzung (Sideriou & Achilias 2005). Die Füller bestehen aus Quarz, Keramik und/oder Siliziumdioxid. Mit Zunahme des Fülleranteils sinken die Polymerisationsschrumpfung, der lineare Expansionskoeffizient und die Wasseraufnahme. Hingegen steigen im Allgemeinen mit zunehmendem Fülleranteil die Druck- und Zugfestigkeit, der Elastizitätsmodul und die Verschleißfestigkeit (Kim et al. 2002). Der Füllergehalt in einem Komposit wird mitunter durch die Form der Füller bestimmt.
Die auf Lutz basierende Einteilung ist noch in nahezu jedem Lehrbuch zu finden und basiert auf der Differenzierung nach Makro-, Mikro- und Hybridkompositen und beschreibt zusätzlich bei den Mikrofüllerkompositen noch diejenigen mit Vorpolymerisaten.
Grundsätzlich ergeben sich heute drei verschiedene Einteilungsmöglichkeiten:
Alle drei Varianten sind korrekt, ergeben aber nur in ihrem Zusammenspiel eine eindeutige Bewertung der Materialien, da zum Beispiel unterschiedliche Matrixkomponenten mit verschiedenen Füllkörpern kombiniert werden können.
Substanzschonende Präparation u.
unsichtbare Komposit-Restauration
Komposit-Restaurationen
Schlussfolgerung
Die Entwicklung von leistungsstarken Füllungsmaterialien ist für den Erfolg der zahnärztlichen Therapie entscheidend. Dabei muss beachtet werden, dass neben dem Füllungsmaterial zusätzliche Aspekte für den Erfolg entscheidend sind. Dies sind ein zuverlässiges und korrekt angewendetes Adhäsivsystem, ein Patient, welcher eine gute Mundhygiene betreibt, und nicht zuletzt ein Zahnarzt, der die Werkstoffe sorgfältig und korrekt verarbeitet. (Hickel & Manhart 2001). Wie in allen Bereichen der Zahnmedizin gilt der Spruch: "Übung macht den Meister".
Von uns erhalten Sie professionelle Unterstützung.
Treten Sie mit uns in Kontakt oder nutzen Sie unser Kontaktformular.
Deutsch | Englisch |
---|---|
Pulverzerstäuber | powder blower |
Einbettmassen Einbettmassen sind thermisch (wechsellast-)beständige Massen zur Herstellung feuerfester Stümpfe (Vollkeramik-Veneers, Inlays) oder Modelle (Modellguss) und detailgenauen Einbettung von Werkstücken zum Sintern, Pressen (von Keramik) und… Einbettmassen Einbettmassen sind thermisch (wechsellast-)beständige Massen zur Herstellung feuerfester Stümpfe (Vollkeramik-Veneers, Inlays) oder Modelle (Modellguss) und detailgenauen Einbettung von Werkstücken zum Sintern, Pressen (von Keramik) und Löten oder Gießen. Sie werden aus Pulver und Flüssigkeit plastisch bis flüssig angemischt, Guss-E. und Presskeramik-E. oft mit Vakuumanrührgerät, Löt-E. meist manuell. Das Pulver besteht zu 80 % bis 85 % aus Quarz-Modifikationen (SiO2, Siliziumdioxid, z.B. Cristobalit), deren relative Anteile die thermische Expansion bestimmen. Größere und kleinere, runde oder eckige Körner sorgen für Ausgewogenheit zwischen den gewünschten Parametern Rissfestigkeit und glatte Oberfläche. Binder machen 15 % bis 20 % des Pulvers aus. Neben gips-, silikat- und acetatgebundenen E. finden heute meist phosphatgebundene E. Verwendung. Sie enthalten etwa gleiche Teile Magnesiumoxid (MgO) und Monoammoniumphosphat (MAP). Sie bestimmen neben der Fließfähigkeit vor allem Abbindeeigenschaften, wie die Abbinde-Temperatur, -Zeit und -Expansion. Je nach einzubettendem Material ist – insbesondere beim Gießen von festsitzendem Zahnersatz aus EM- oder NEM-Legierungen, sowie herausnehmbaren Modellgussprothesen-Anteilen aus Co-Cr-Mo – zum Ausgleich der thermischen Kontraktion (ca. 1,5 % bis 2,5 %) beim Erstarren der flüssigen Metallschmelze die präzise Steuerung der Expansion der E. von großer Bedeutung. Sie setzt sich aus thermischer Expansion und Abbindeexpansion zusammen. Letztere kann (bei sonst gleichen Bedingungen, wie der Umgebungstemperatur) durch das Mischungsverhältnis von destilliertem (oder entmineralisiertem) Wasser und Anmischflüssigkeit ("Liquid") der E. bestimmt werden. Die enthaltenen gelierenden und kristallisierenden Kieselsol-Partikel wirken beim Abbinden der E. zu einer stabilen, druck- und bruchfesten Form als Härter und volumenvergrößernder Füller. E. für den Titanguss müssen gegen eine Reaktion mit der Titanschmelze geschützt sein, früher durch sog. "Refraktäroxide", heute durch Spinellbasis und Acetat-Binder. Feineinbettmasse mit Wasserglasbinder (und ggf. Kornfeinungsmitteln für verbesserte Gefügestruktur) dienten beim Modellguss zum Schutz der Oberflächen von Wachsmodellationen vor den Einflüssen von reversiblen Hydrokolloiddubliermassen. Sie sind für heutige Silikondubliermassen entbehrlich. Beim klassischen Wachsausschmelzverfahren wird die Wachsmodellation auf einem Muffelformer angestiftet und zur Vermeidung von Lufteinschlüssen in der E. mit einem Netzmittel behandelt. Ein Muffelring aus Metall (beim ringlosen Verfahren aus abnehmbarem Kunststoff) begrenzt die Expansion in Querrichtung (Vermeidung von Überexpansion), eine Muffelringeinlage ("Vlies") gibt ihr definierten Raum. Die E. wird nun angemischt und (kurzzeitig auf einem Rüttler) in die Muffel eingefüllt. Die Abbindung/Aushärtung erfolgt innerhalb von 15 bis 40 Minuten. Bei modernen ("shock-heat-fähigen" oder "Speed"-) Einbettmassen kann und muss noch vor Ende der Abbindereaktion im Vorwärmofen das Restwasser ohne Rissbildung ausgetrieben werden. Durch das Vorwärmen auf eine Temperatur, die ein vorzeitiges Abkühlen der Schmelze verhindert und ein Ausfließen feiner Details ermöglicht, wird die thermische Expansion der E. abgeschlossen. Um ein präzises Gussergebnis zu erreichen, soll die E. feinzeichnend "abformen", eine glatte Oberfläche aufweisen, trotz hoher Temperaturen korrosionsstabil gegenüber der Schmelze sein, während der Gussverzugszeit nicht kontrahieren, genügend porös sein, um das Abziehen von entstehenden Gasen zu erlauben, und sich beim Ausbetten leicht entfernen lassen. Dazu wird nach dem Guss- oder Press-Vorgang die erkaltete Hohlform aus E. ("verlorene Form"), bei Modellgüssen auch das Duplikatmodell ("verlorenes Modell") z.B. durch Absprengen und Abstrahlen zerstört. Dabei soll – ebenso wie beim Anmischen – möglichst wenig lungengängiger Quarz-Staub entstehen, moderne E. sind deshalb staubarm. |