Porcelain furnaces
Modern, 21st century porcelain furnaces are technically sophisticated, electronically-controlled devices with programmable cycles for firing dental porcelains. These include metal-ceramics for firing onto metal frameworks (classic precious or non-precious alloys, titanium) or all-ceramics such as zirconia or lithium disilicate. All-ceramic inlays or laminate veneers can be fired directly onto refractory model dies.
The principle unit of a porcelain furnace is its refractory firing chamber. Once the porcelain has been built up, the restorations can be placed onto mesh, cones, pins or firing pads for firing.
The heating coils are usually located in the upper housing of the furnace and arranged concentrically around the restoration. A motor-driven mechanism closes the firing chamber with the restoration inside, either by raising the firing platform or lowering the upper housing of the furnace. The firing cycle settings depend on the material being fired/procedures and run according to pre-set, standardised or custom programmes.
Many settings can be programmed precisely and independently of each other, for example times can be set to the split second (preheating/drying, heat-rate, hold-time, cooling) and firing temperatures for various materials such as opaquer, shoulder and dentine porcelains as well as glaze firings programmed accurately.
As the only way of preventing undesirable opacity in the porcelain is to evacuate the firing chamber during firing (vacuum phase), a built-in powerful vacuum pump is an essential part of a porcelain furnace.
Porcelain furnace
Combined firing/pressing furnaces are used for fabricating pressed-ceramic restorations (pressing procedure resembling casting which makes use of pressure and heat to liquefy ceramic blocks and force them into lost, refractory investment moulds) using special firing chambers and pressure plungers.
Whereas glass infiltration firing of presintered ceramic is possible in a porcelain furnace ("infiltration firing"), special high temperature sintering furnaces are required for the actual sintering process (such as for zirconia).
Von uns erhalten Sie professionelle Unterstützung.
Treten Sie mit uns in Kontakt oder nutzen Sie unser Kontaktformular.
Deutsch | Englisch |
---|---|
Präventionskonzept | preventive concept, prophylaxis concept |
Komposite Komposite auch Komposit; (aus dem Lateinischen componere = zusammensetzen) sind zahnfarbene plastische Füllungsmaterialien für die zahnärztliche Behandlung. Laienhaft werden sie auch oft als Kunststofffüllungen bezeichnet,… Komposite Komposite auch Komposit; (aus dem Lateinischen componere = zusammensetzen) sind zahnfarbene plastische Füllungsmaterialien für die zahnärztliche Behandlung. Laienhaft werden sie auch oft als Kunststofffüllungen bezeichnet, fälschlicherweise gelegentlich auch wegen ihrer Zahnfarbe mit Keramikfüllungen verwechselt. Nach dem Einbringen in eine Kavität härten sie chemisch oder durch das Bestrahlen mit Licht oder kombiniert (dualhärtend) aus. Heute werden Komposite auch als Befestigungsmaterialien verwendet. Bei lichthärtenden Systemen lässt sich die Verarbeitungszeit steuern, was sowohl beim Legen von Füllungen als auch bei der adhäsiven Befestigung von Werkstücken einen großen Vorteil darstellt. Dualhärtende Befestigungsmaterialien sind Paste/Paste-Systeme mit chemischen und photosensiblen Initiatoren, die eine ausreichende Aushärtung auch in Bereichen ermöglicht, wo die Lichthärtung nicht gesichert oder kontrollierbar ist. Komposite wurden 1962 durch die Mischung aus Dimethacrylat (Epoxidharz und Methacrylsäure) mit silanisiertem Quarzmehl hergestellt (Bowen 1963). Kompositrestaurationen sind dank ihrer Eigenschaften (Ästhetik und Vorteile der Adhäsivtechnik) heute anstelle der Amalgamfüllungen gerückt.
Alle drei Varianten sind korrekt, ergeben aber nur in ihrem Zusammenspiel eine eindeutige Bewertung der Materialien, da zum Beispiel unterschiedliche Matrixkomponenten mit verschiedenen Füllkörpern kombiniert werden können.
Schlussfolgerung
|